If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4j^2+3j-28=0
a = 4; b = 3; c = -28;
Δ = b2-4ac
Δ = 32-4·4·(-28)
Δ = 457
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{457}}{2*4}=\frac{-3-\sqrt{457}}{8} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{457}}{2*4}=\frac{-3+\sqrt{457}}{8} $
| 6x-(3x-15)=37 | | 10+10=r*10 | | -3(2z-8)=2(z-7) | | k/3=43 | | 4t+40+t-10=180 | | 12+12=r*12 | | 2/3x+15=6x-13 | | .25=10^-x | | (9x-3)+(10-5x)=9x-3+10-5x= | | -26-3x=2x-8x+40 | | 288=(2x-6)4 | | .06(x)+.05(2x)=680 | | 13−9x=76 | | 4t+40t-10=180 | | 4(1+a)-6a=-1-5(7-2a) | | 6/7xN=2 | | -7+4(3x-5)^3=7 | | 7+y–(3+328)=3 | | 2x+18=18-7x | | 2)(3/4n+3)=9 | | f4=–3 | | 3(g−15)=12 | | 14=9m=-3 | | -4(4-3x)=-100 | | 5(r-1)=2(r-4))-6 | | 0.25*(8-4n)-2(6-2n)=91 | | 6.32+4x=25.08 | | 2x+10-(4x+2)=66 | | 14x-7=75° | | 111=x2+11 | | 2b+(b+45)+90+(2b−90)+b=540 | | -115-6x=-13x+60 |